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PARTICLE IN 1-D BOX

• Let us write the Schrodinger wave equation in one   
• dimension.
• -h2/8π2m. d2Ψ /dx2 +UΨ=E Ψ……(1)
• If we consider an electron of mass m in a box of 1-
• dimension whose length is a.
• The particle can exist anywhere between x=0 to x=a.
• Let the potential energy of the particle be zero inside 
• this potential energy well and let the potential 
• energy at x=0 and x=a  as well as outside the box be 
• ∞.



Thus the particle is unable to cross this energy barrier  

and go outside the box.

We can write the Schrodinger wave equation outside 

the box:

-h2/8π2m. d2Ψ /dx2 +∞Ψ=E Ψ…….(2)

Multiplying this equation (2) by -8π2m/h2, we get

d2Ψ /dx2 - 8π2m/h2 ∞Ψ= -8π2m/h2 E Ψ

This equation can be rearranged as

d2Ψ /dx2 = 8π2m/h2 ∞Ψ -8π2m/h2 E Ψ

= 8π2m/h2 (∞-E) Ψ……….(3)



For finite values of energy, equation (3) can be 
written as d2Ψ /dx2= ∞ Ψ……(4)

The left hand side of this equation has to be 
finite (Ψ is a well behaved wave function), so 
the right hand side has to be finite which is 
possible only if Ψ=0.

Thus Ψ=0 for all points outside the box and the 
particle cannot exist outside the box at all. 



When the particle is inside the box, the potential

energy is 0. Therefore the Schrodinger wave equation 

inside the box is :

-h2/8π2m. d2Ψ /dx2 =E Ψ……..(5)

Or    d2Ψ /dx2+ 8π2mE Ψ/h2=0………(6)

Let        k2=8π2mE/h2 ……………..(7)

Thus, rewriting we have

d2Ψ /dx2+ k2Ψ=0 …………(8)

•



Thus, rewriting we have

d2Ψ /dx2+ k2Ψ=0 …………(8)

This is a second order differential equation whose 
solution is of the form       

Ψ=A.sinkx + B.coskx …(9)

where A and B are arbitrary constants. 

The values of these constants can be calculated using 
the boundary conditions. 



Since the wave function is 0 outside the box,
It must also be 0 at the walls of the box as there must

be a continuity in the values of Ψ at the walls of the
box. 

Thus Ψ must be 0 at x=0 and x=a.
Thus at x=0 the equation (9) becomes:

0= Asink.0+Bcosk.0
0=Bcosk.0
Since cosk.0=1, therefore B=0

Thus equation (9) is reduced to 
Ψ=Asinkx ………..(10)



At the point x=a, equation (9) becomes:

0=Asinka

For this to be true, either A=0 or sinka=0

If A=0, the wave function will become 0                                   
everywhere inside the box which is not            
acceptable, so sinka=0

Since sinka can be zero for all values of sinnπ
Therefore sinka= sinnπ

Or ka= nπ

Or k= nπ/a ……..(11)



Where n is an integer having values 0,1,2,3…

Finally, the wave function for the particle inside the 
box becomes 

Ψ=A sinnπx/a ………(12)

Using equation (7) and (11), we get
(  nπ/a)2=8π2mE/h2

or  n2π2/a2 = 8π2mE/h2

or En =n2 h2/8ma2 ……….(13)
For a particle moving between two points , the 

energy is quantized.



For a particle moving between two points, the 
energy is quantized.

n En = n2h2/8ma2

1 h2 /8ma2

2 4h2 /8ma2

3 9h2 /8ma2

4 16h2/8ma2



No such discrete levels are expected from classical 
mechanics.

Although n=0 is permitted but it is not acceptable as it 
would make the wave function 0 everywhere inside 
the box.

Thus, lowest energy is obtained by substituting n=1 in 
equation (13).

This energy is known as the Zero point energy.

E zero point =  h2 /8ma2



The salient features of the particle in a box problem 
are summarized below.

1) The particle is not at rest even at 0 Kelvin.

Therefore, the position of the particle cannot be 
precisely known.

In such a situation, only the mean value of the kinetic 
energy can be known. Therefore, the momentum of 
the particle is also not known precisely.

The occurrence of zero point energy is in accordance 
with Heisenberg’s Uncertainty Principle.



2) The allowed integral values of n come naturally as a 
consequence of the solution and not as an arbitrary 
postulate as given by Bohr.

‘n’ is called a quantum number.

3) The energies of the electron are quantized. The only 
permitted values are as given in the table. 

4) Plots of Ψ and Ψ 2 for different values of n are as 
shown. 





The plots of Ψ and Ψ 2       for different values of n are 
as shown. The appearance of nodes and antinodes in 
the wave function is another striking feature of this 
problem.

The plots of Ψ versus x show that there are n-1 nodes 
( regions of zero amplitude and zero probability) in 
each wave function. The antinodes are regions of high 
probability e.g. at x=a/2, in case of Ψ1 and at x=a/4 
and 3a/4 in case of Ψ2.

There are nodal points in between positions other than 
x=0 and x=a



5)  The probability density Ψ 2 has the same number of 
maxima as the quantum number ‘n’.

For n=2, the probability of finding the particle at the 
centre of the box is zero, which is quite different 
from the classical result.

6) As we go to higher energy levels with more nodes, 
the maxima and minima of probability curves come 
closer together and the variations in probability 
along the 1-d box become undetectable. 

For higher quantum numbers, we approach the 

results of uniform probability density.



This is in agreement with ‘Bohr Correspondence 
Principle’. According to this principle, the quantum 
mechanical result must go over to classical mechanics 
when the quantum number describing the system 
becomes very large.

7) The energy expression En =n2 h2/8ma2 shows          
that energy is inversely proportional  to a2 i.e., 
square of the length of the box.

Longer the box, lower will be its energy.
More localized the electron, higher will be its energy.



In chemical systems , larger the extent of delocalization, 
more stable is the system energetically. ( For example, 
benzene and other conjugated systems.)

8) At a first glance, the energy expression is inversely 
proportional to the mass of the particle. It seems to 
contradict the fact that kinetic energy is proportional to 
mass of the particle.

However, if we understand that submicroscopic particles 
travel close to the speeds of light, we can understand 
this contradiction. 



The energy expression suggests  that the lighter 
particles will have velocities close to the velocity 
of light and heavier particles will have lower 
velocities.

This would suggest that β-rays would have higher 
velocities than α- rays.
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